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In this paper, we solve numerically the entire set of equations associated with
the electro-thermo-convective phenomena that take place in a planar layer of
dielectric liquid heated from below and subjected to unipolar injection. For the
first time the whole set of coupled equations is solved: Navier–Stokes equations,
electrohydrodynamic (EHD) equations and the energy equation. We first validate
the numerical simulation by comparing the electro-convection stability criteria with
ones obtained with a stability approach. The numerical solution of the electro-
thermo-convection problem is then presented entirely with a detailed analysis of
stability parameters. In particular, the relation between fluid velocity, non-dimensional
electrical parameter T, Rayleigh number Ra and Prandtl number Pr is given. An
analytical model is presented in order to understand the flow behaviour at some
critical conditions. The way that the onset of motion passes from purely electrical
convection to purely thermal convection is, in particular, investigated and explained
in detail. Finally, a result on the heat transfer enhancement due to electro-convection
is exhibited and compared with data from experimental works available in this field.
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1. Introduction
Electro-convective phenomena in dielectric liquids have already been widely

investigated over the last four or five decades. It is well known that the flow in
an isothermal dielectric liquid layer between two infinite parallel electrodes (with one
raised to a high potential) is due to the action of the electric field on the electric charges
injected into the liquid. The electrochemical mechanisms giving rise to the injection
of charges at the interface between the dielectric liquid and the electrodes have also
been studied in depth by Felici (1972). The injection phenomenon is generated by

† Email address for correspondence: philippe.traore@univ-poitiers.fr
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positive and negative electrodes submerged in liquids of low enough conductivity and
is called unipolar injection when it occurs at only one electrode.

In electrohydrodynamics (EHD) the convection induced by charge injection in a
dielectric liquid is a problem as fundamental as the Rayleigh–Bénard problem in
non-isothermal fluid mechanics. The action of the electric field on the space charge
density arising from unipolar injection has the same destabilizing role as the thermal
field when the fluid is heated from below in the Rayleigh–Bénard problem. In electro-
convection the flow originates from the growth of instabilities triggered by the critical
value of the non-dimensional electrical parameter T (Atten & Moreau 1972) whereas
in Rayleigh–Bénard convection the instabilities are triggered by the critical value
of the Rayleigh number Ra. However, the two convections are not identical from
a physical point of view. The mechanisms at the origin of the motion of the fluid
are quite different in both cases: in Rayleigh–Bénard convection, the heat transfer is
governed by thermal diffusion whereas the migration of ions is the relevant mechanism
in the electric charge transfer in electro-convection.

In 1969 Felici was the first to propose a simple isothermal hydraulic model in
which inertial effects are neglected and for which injection is unipolar and weak. A
convective roll cell was modelled by two columns of the same radius with constant
liquid velocity. His model explains in qualitative terms the onset and persistence of the
steady finite-amplitude motion of two-dimensional rolls in an initially static plane layer
of dielectric fluid. The author established the existence of two criteria, the standard
stability criterion Tc associated with the perturbation of infinitely small amplitudes and
another criterion Tf (Tf <Tc) corresponding to finite-amplitude velocity disturbances.

The combined effects of an electric field and a thermal gradient simultaneously
applied to a horizontal dielectric liquid layer leads to complex physical interactions
in the flow and have received much attention in recent years (Castellanos, Atten &
Velarde 1984a; Atten, McCluskey & Pérez 1988; McCluskey, Atten & Pérez 1991).
One of the reasons for this interest is that the development of electro-thermo-
convective instabilities in liquids could be a promising way to increase the heat
transfer by means of electrical forces. Such combined effects are therefore worthy of
examination not only from a fundamental point of view but also because of potential
technological advantages that may result from them (Bryan & Seyed-Yagoobi 1997,
2001; Lin & Jang 2005; Grassi & Testi 2006; Suman 2006). The stability analysis
was done in a series of papers by Worraker & Richardson (1979, 1981), Martin &
Richardson (1982), Castellanos et al. (1984a,b), Rodriguez, Castellanos & Richardson
(1986) and Pontiga & Castellanos (1992, 1994). A first attempt to incorporate
temperature effects in the hydraulic model of Felici (1969) was made by Martin
(1982). Richardson (1988) made a more complete study of Felici’s model.

Since the solution of the governing electro-thermo-hydrodynamic (ETHD)
equations is not readily amenable to an exact mathematical analysis, this problem
has been tackled by several alternative methods. Only a few numerical simulations
have been attempted on pure EHD convection problems (Castellanos, Atten &
Pérez 1987; Chicón, Castellanos & Martı́n 1997; Chicón, Castellanos & Pérez 1999;
Vázquez, Georghiou & Castellanos 2006, 2008; Tsai et al. 2007). To our knowledge, a
direct and fully coupled numerical simulation of the ETHD problem has never been
performed in a satisfactory way. In the present work, we carry out a direct numerical
study of electro-thermo-convection in a two-dimensional cavity.

The present paper is organized as follows. In § 2, we define the mathematical
problem to be studied. Section 3 is devoted to a brief presentation of the numerical
method that we developed to compute the dynamic, electrical and thermal variables
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Figure 1. The dielectric liquid layer.

describing the problem. Accurate quantitative results concerning the transition to
convection are provided in § 4. Also in this section an analytical model is presented
that helps to understand the different types of bifurcation encountered. Finally, in § 5,
we quantify the real impact of electro-convection on heat transfer and compare our
numerical data with experimental results. In § 6 we present our conclusions.

2. Statement of the problem
2.1. Governing equations

Consider an incompressible and perfectly insulating liquid of density ρ, permittivity
ε, constant kinematic viscosity ν and constant thermal diffusivity κ , enclosed between
two parallel planar electrodes. These horizontal metallic electrodes (figure 1) are
assumed to be rigid heat conducting plates and maintained respectively at fixed
temperatures θ0 and θ1. The emitter electrode corresponding to the plane y = 0 is held
at potential V0 and is the source of ions which are injected into the liquid and collected
by the electrode at y = H which is held at potential V1. The injection of unipolar
charge of mobility K at the emitter is assumed ‘homogeneous’ and ‘autonomous’; this
means that q = q0 at y = 0 at all times since the injector, and hence the injection rate
are not influenced by perturbation in the bulk. Furthermore, in order to avoid undue
complexity, we neglect the charge diffusion process and Joule heating, and make use
of the Boussinesq approximation.

In this paper, we consider the case of strong injection. In this context, experiments
have shown a weak influence of the temperature gradient on electro-convection
regimes (Pérez et al. 1988; Atten et al. 1988). Also, Rodriguez et al. (1986) have
shown that the influence on the stability threshold of the variation of mobility and
permittivity with temperature is negligible. Therefore the liquid properties will be
taken as independent of temperature.

If now length, time, liquid velocity, charge density, electric potential, electric field
temperature, pressure field, mass density, permittivity and ionic mobility are made
dimensionless by making the following transformations:
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Figure 2. Boundary conditions.

the resulting governing equations of this thermo-electrohydrodynamic system are

∇ · u = 0, (1)

∂u
∂t

+ (u · ∇)u = −∇p̃ + �u + RT Cq E +
Ra

Pr
θez, (2)

∂θ

∂t
+ u · ∇θ =

1

Pr
�θ, (3)

∂q

∂t
+ ∇ · (q(u + RE)) = 0, (4)

�V = −Cq, (5)

E = −∇V. (6)

The Rayleigh number Ra, applied voltage measure T, injection strength C, mobility
parameter M, electrical Reynolds number R and Prandtl number Pr are defined by

Ra =
gβ�θH 3

νκ
, T =

ε0�V

ρ0ν K0

, C =
q0H

2

ε0�V
,

M =
1

K0

(
ε0

ρ0

)1/2

, R =
T

M2
, Pr =

ν

κ
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7)

2.2. Boundary conditions

Horizontal walls with no-slip conditions are assumed impermeable as well as thermally
and electrically perfectly conducting. Thus the associated boundary conditions on
velocity, temperature, electric potential and charge density are chosen as shown in
figure 2. On lateral walls we apply symmetrical boundary conditions, essentially used
to simulate an infinitely long cavity.

3. Numerical solution method
The problem under consideration is described mathematically by the conservation

equations for mass, momentum, energy and charge density and by Poisson’s equation
for potential. The above set of coupled partial differential equations (see (1)–(6))
is discretized using a finite-volume approach. All the details on the finite-volume
discretization method used here are given by Patankar (1980).

Considering the hyperbolic nature of the transport equation for charge density
q, since diffusion has been neglected steep gradients may appear. For this kind of
equation, the ‘central difference scheme’ (CDS) is known to introduce undesirable
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over- and undershoots while the ‘upwind difference scheme’ (UDS) will smear the
solution in an unacceptable way.

So, because of the lack of physical diffusion and to prevent the development of these
possible oscillations of the solution, one has to add artificial or numerical viscosity
and also use a non oscillating, non diffusive and bounded scheme (Godunov 1959)
or schemes which have the total variation diminishing (TVD) property (Davis 1984).
In order to satisfy these unavoidable requirements, we have chosen the second-order
smooth monotonic algorithm for real transport (SMART) scheme of Gaskell & Lau
(1988).

Since the momentum equations are written for an incompressible fluid, the
main difficulty lies in the computation of pressure from velocity. We chose the
Augmented Lagrangian method (Fortin & Glowinsky 1983) as velocity–pressure
coupling algorithm. All details of the implementation can be found in Traoré (1996).

4. Small- and finite-amplitude instability
4.1. Analytical qualitative analysis of the bifurcation

A liquid layer heated from below becomes unstable at a certain critical value of
the Rayleigh number. When injection is present, a combination of Ra and T gives
the threshold for instability. Before presenting the numerical results, it is useful to
have some analytical insight. In the spirit of the hydraulic model of Felici (1969),
or other semi-analytical methods as described in Castellanos (1991), we can average
the equation of motion over a convective cell (a similar approach can be found in
Richardson 1988). Let us assume a given profile of velocity u = Au0(x, z) and multiply
(2) by u0. Integrating over a convective cell we have

C
T 2

M2

∫
q E · u0dτ +

Ra

Pr

∫
θez · u0dτ +

∫
u0 · ∇2udτ = 0, (8)

where the inertial term is neglected, the pressure term is zero after integration, and
a steady state is assumed. To carry out the integration we need the profiles of
temperature θ and charge q. These can be computed to any order in amplitude A if
we use a very simplified velocity profile: the cell is divided into two columns of width
L/2 and the liquid goes up with uniform velocity A in one column and goes down with
uniform velocity −A in the other. This corresponds to taking u0 = −1 for 0 <x <L/2
and u0 = 1 for L/2 < x < L. The charge density in the rising column is given by

q =
1(

1 + C
z

1 ± M2A/T

) , (9)

where the + sign corresponds to the right column and the − sign to the left one.
This expression is valid as long as A < T/M2. When the velocity approaches T/M2,

the charge on the returning column tends to zero and the electric driving term saturates
at a value proportional to T 2. The electrical term has the qualitative dependence on
A depicted in figure 3(a) (see Felici 1969). Close to A= 0, the function is concave.
There is a rapid increase with A and then a saturation for A > T/M2.

The temperature profile in each column follows from (3) with a constant velocity
u0z. The buoyancy term becomes,

Ra

Pr

∫
θez · u0dτ =

RaLx

2Pr

(
sinh(APr)

cosh(APr) − 1
− 2

APr

)
. (10)
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Figure 3. Evolution of the driven term Pe + Pt as a function of A. (a) Pe dominates,
(b) Pt dominates and (c) Pt dominates for small A.

Unlike the electrical term, near A ∼ 0, the function is convex. However, it also tends
to saturate for A � 1/Pr . Figure 3(b) represents qualitatively the dependence of the
thermal term Pt on the velocity amplitude A.

Collecting the different terms, expanding up to order A3, and rearranging,
equation (8) can be expressed as(

Ra

Rac

+
T

Tc

)
+

(
M4

TcT
− RaPr2

60Rac

)
A2 = 1. (11)

For A= 0, this equation provides the instability threshold in the Ra–T plane. The
subcritical or supercritical character of the bifurcation is determined by the coefficient
of A2. For the Rayleigh–Bénard problem, in the absence of electric forces, the
instability develops as a supercritical bifurcation. The behaviour is totally different in
the electrohydrodynamic instability (see e.g. Castellanos 1991), as the bifurcation is
subcritical. The liquid is at rest until T exceeds Tc, then the system evolves towards
a motion with a velocity that is not of small amplitude, and cannot be predicted
by a quasi-linear analysis (Felici 1969; Atten & Lacroix 1979). Once the convective
regime is established, decreasing the value of T below the instability threshold does
not result in the suppression of motion until a second value of T, the finite-amplitude
criterion, is reached. Therefore, a hysteresis loop associated with these two values of
the stability parameter T results.

If the combination RaPr2 is smaller than a certain value one expects to observe a
subcritical bifurcation and a behaviour of the electric type: there will be two instability
thresholds, one associated with the instability of small-amplitude perturbations and a
second associated with the suppression of the finite-amplitude solution (see figure 3a).

If Pr is high enough to make the coefficient of A2 negative, the curvature of
the total driving force is dominated by the thermal term near A= 0. However, for
A � 1/Pr the thermal term saturates, and the whole driving force Pe +Pt acquires the
curvature of the electrical term (figure 3c). Near the critical value of T we will have a
supercritical bifurcation, but as T increases, a situation with four possible solutions is
found. Of these four solutions, two are unstable and two are stable. They are labelled
‘u’ and ‘s’, respectively, in the plot. In this case there are three critical values. The
first is the small-amplitude critical value Tc, which corresponds to the appearance
of the first stable equilibrium. The second critical value, labelled Tf , is associated
with the appearance of the second stable point in figure 3(c). The third critical value
corresponds to the disappearance of the first stable point in figure 3(c) and represents
a second small-amplitude critical value, labelled Tc2. This value is always greater than
Tf and Tc.

4.2. Ra–T diagram

We have studied numerically the instability problem in detail, focusing on an
understanding of the role played by the main non-dimensional parameters Ra and T.
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Close to the instability threshold, the perturbations of every physical quantity f grow
according to the exponential law f = f0e

σ t . The growth rate σ is positive above the
instability threshold and negative below it. If we let the system evolve from rest, the
tiny numerical fluctuations always present suffice to induce motion. After an initial
period of latency (typically 10 units of non-dimensional time) for which the velocity
is very small and varies erratically, a first interval of exponential growth is observed.
For a given L and a given T, we determine the growth rate of the perturbations in
this interval, which is directly related to linear perturbations. A linear fit of the values
of σ versus T gives the critical value of T which corresponds to σ = 0. Following this
procedure, and as a test of the overall code, we have been able to reproduce the main
results obtained in Atten & Moreau (1972).

Equation (11) means that a straight line separates the stable region from the
unstable region for small-amplitude perturbations. However, one of the differences
between the thermal and electrical instabilities is the wavenumber of the most unstable
mode. For Ra =0, the pure electrical problem, and for strong injection (C = 10), the
expected width of the convective roll for small-amplitude motion is 0.614 whereas,
for the pure thermal problem (T =0), it is 1.0. This variation of the width of the
convective rolls and hence of the wavenumber is not taken into account in the
analytical model, since L is fixed. This variation results in a deviation of the critical
line from a straight one. In order to deal with this problem of non-constancy of
the most unstable wavenumber we have chosen a domain of computation of large
L (L = 10). With such a length, the system is less constrained and can evolve freely
towards the most unstable mode.

For different values of Ra and for two values of Pr, we have plotted the critical
values of T defining the small-amplitude and finite-amplitude criteria for which the
growth rate is zero: Tc or Tc2 and Tf . In this diagram (figure 4), below the line
corresponding to the finite-amplitude criteria labelled Tf , there is no motion and the
rest state is stable. Above the lines Tc or Tc2, there is always motion with a maximum
velocity greater than the ion drift velocity. Between both lines, there is hysteresis and
we get motion or not depending on the previous value of T.
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Figure 5. Wavelength versus Rayleigh number for Ra and T close to the critical line.

In these computations, the values of the other parameters are fixed (C = 10 and
M = 10). The computed critical line deviates, as expected, from a straight line. The
number of rolls observed when the velocity pattern is established varies along the
line. In order to have a closer look at this variation, we made some simulations for
values of T and Ra near the critical line. Starting from a rest state, the system evolves
freely towards a certain number of rolls. The width of the rolls corresponds in fact to
the half-critical wavelength λ/2 of the most unstable mode. In figure 5, λ/2 is plotted
versus Ra and as expected it varies from 0.615 for Ra =0 to 1.01 for Ra = 1800
whereas the theoretical corresponding values are 0.614 and 1.

The way λ depends on Ra shows some steps (observe the values at Ra = 200 and
400 or Ra = 1400 and 1600) due to the fact that only an integer number of rolls
is allowed. Increasing the value of L, which is here equal to 40, these steps tend to
disappear.

4.3. Finite-amplitude behaviour

The diagram for the small-amplitude criterion (values of Tc) plotted in figure 4 has
already been presented by Castellanos & Velarde (1981) and Castellanos et al. (1984a),
using a linear perturbation analysis of the equations. Our numerical code allows us
to explore the finite-amplitude behaviour as well. Again, we expect to encounter a
transition between the pure electrical and the pure thermal behaviours.

Figure 6 shows the results for three different values of the Rayleigh number for
Pr = 10 (as before C = 10 and M = 10 are fixed). We have marked with arrows
the small and finite-amplitude criteria, in order to make clear the hysteresis loop.
As expected, the hysteresis loop reduces its amplitude as we increase the Rayleigh
number. We must bear in mind that for T = 0 the bifurcation becomes supercritical
and there is no hysteresis.

4.4. Hysteresis loop on varying Ra

Looking at figure 4, for Pr =10, the question arises whether it would be possible
to obtain a hysteresis loop by varying the Rayleigh number instead of the electrical
parameter T. It seems clear that the only thing that is necessary is to keep T constant,
but different from zero, and to vary the Rayleigh number in such a way as to cross
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Figure 7. Vmax versus Rayleigh number for four different values of T and for Pr = 10.

the critical line in a direction parallel to the Ra axis. On figure 7 we have plotted the
evolution of Vmax versus Rayleigh number for different values of T.

These results are consistent with the ones shown in figure 4. Depending on the
value of T, there are one, two or no critical values of Ra. Although the subcritical
character of the bifurcation is due to the presence of the electric force, we think it
is remarkable to have found this type of bifurcation by adjusting only the Rayleigh
number, that is to say, the temperature gradient.
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4.5. Supercritical behaviour

If we increase the value of Pr, we expect to observe supercritical bifurcations for some
value of Ra. Figure 8 shows the evolution of Vmax as a function of T for Ra = 1400
and Pr =40. We observe three critical values. At T close to 30, there is a first
bifurcation, which is supercritical. This value of T, named Tc, is the small-amplitude
critical value and is the same as predicted by (11). This value does not depend on
Pr. Increasing T, we find another bifurcation at T =134. We label this second critical
value as Tc2. Decreasing the value of T a hysteresis loop is traced and another critical
value Tf is found where the velocity returns to the lower branch. To sum up, figure 4
shows the main features qualitatively predicted by the analytical model presented
in § 3.1.

The system is unstable for values of T and Ra above a line that does not depend
on Pr and that is close to the straight line Ra/Rac + T/Tc = 1. For small values of
Pr, the coefficient of A2 in (11) is always positive and the bifurcation has a subcritical
character. There are two thresholds and a hysteresis loop associated, as predicted
by the schematic plot of figure 3(a). This is the situation for Pr = 10. Increasing the
value of Pr introduces the possibility of having supercritical bifurcations. This is the
case for Pr = 40, but even in this case, if Ra is small enough, the bifurcation is still
subcritical. Indeed for Ra < 400 there are only two critical values of T: Tf and Tc

(see figure 9). The transition is similar to that of figure 6 obtained for Pr = 10. It is
still consistent with the pattern of figure 3(a). For Ra > 400 and Pr =40 the product
Pr Ra is high enough to make the coefficient negative. Our analytical model predicts
the existence of three critical values: Tf , Tc and Tc2. This behaviour corresponds
now to the pattern of figure 3(c). In that case Tf can be smaller or greater than Tc,
depending on Ra as clearly depicted in figures 10 and 11. These critical values can be
found in figure 4 as well.
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Figure 9. Vmax versus T, Ra = 200, Pr = 40.
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Figure 10. Vmax versus T; Ra =600, Pr = 40 case: Tf < Tc .

5. Electro-convection and heat transfer
In this section, several numerical simulations have been conducted in order to

quantitatively measure the influence of electro-convection on heat transfer. The length
of the cavity is L =10 with symmetrical boundary conditions on the lateral walls. The
results give 16 convective cells. A well-developed convective state is reached after a
transition time: the non-stationary state starts for given values of T depending on M,
C, Pr and Ra and then the Nusselt number fluctuates more or less around a mean
value with a given frequency and amplitude (oscillatory regime). Figure 12 shows the
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Figure 12. Mean Nusselt number for different values of T and Rayleigh number.
C = 10 and M = 10.

mean value of the Nusselt number for different Ra and T. One can clearly see that
above T =250 the electrical forces dominate the heat transfer and for T = 500 the
Nusselt number does not depend on Ra.

In some earlier works (Atten et al. 1988; McCluskey et al. 1991), the authors give
experimental results that demonstrate that electro-convection induced by unipolar
injection increases heat transfer. They use bare electrodes and silicone oil doped with
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a suitable salt that produces a controlled and rather weak injection (C between 0.15
and 0.55). In McCluskey, Atten & Pérez (1988, figure 3), the Nusselt number is plotted
as a function of the Rayleigh number, for different values of the applied voltage.
Above a voltage of 6 kV the Nusselt number does not depend on the Rayleigh number,
which means that the motion is completely dominated by the electrical forces. For
higher potentials, the Nusselt number can be 10 times or more that without electric
forces. Even if in our simulation the injection level C was 10, instead of less than 1 as
in the mentioned experiments, both approaches give the same tendency: the electrical
forces increase the heat transfer and from a certain value of the electrical parameter
T they completely dominate the heat transfer, which does not depend on Ra any
longer. The fact that the value of C is not the same is not really important here: if the
electric forces dominate the heat transfer for small C (small influence from electric
field), they will also dominate it for high C (great influence from electric field), which
is the case in our simulations. Our code is therefore able to qualitatively reproduce the
enhancement of heat transfer due to electro-convection and it could be a valuable tool
for evaluating the efficiency of different geometrical configurations for heat exchanger
designs.

6. Conclusion
In this paper, we have presented a finite-volume numerical modelling that solve

the whole set of partial differential equations associated with the electro-thermo-
convective phenomena. This set of coupled equations includes the Navier–Stokes
equations, the charge density conservation equation, Poisson’s equation for potential
and the energy equation. The code has been used to study the stability of a dielectric
liquid layer subjected to the simultaneous action of an electric field and a destabilizing
temperature gradient with unipolar injection of electric charges from the lower hot
electrode. We have obtained the curve in the plane Ra–T corresponding to the
instability limit, which separates the linearly unstable region from the stable one and
which deviates from a straight line. This deviation is a consequence of the variation of
the most unstable wavenumber from one corresponding to a pure electrical problem
(Ra = 0) to one corresponding to a pure thermal problem (T = 0). For fixed values of
the Rayleigh number, we have found hysteresis loops in the variation of the velocity
with T. They are a conspicuous characteristic of the unipolar injection problem. We
have also determined the line associated with the finite-amplitude stability criterion
connected to the hysteresis loop in the Ra–T plane. The presence of the electric
force makes possible the hysteretic behaviour of the liquid flow velocity when the
Rayleigh number varies, which is not the case in the pure thermal problem. An
analytical model has been developed to understand the appearance of subcritical
or supercritical bifurcations depending on the value of Pr or M. With the insights
provided by this model and confirmed by numerical results, we have been able to
find a subcritical bifurcation by varying the Rayleigh number which coexists with
supercritical behaviour when varying the electrical parameter T. These behaviours
are opposite to the ones expected for the corresponding pure problems. Finally, we
have evaluated the heat transfer enhancement due to electro-convection. We have
demonstrated that the electric force may enhance heat transfer and that the Nusselt
number becomes almost independent of Rayleigh number for high enough values
of T. Our results are in good qualitative agreement with available experimental
data.
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